Topological lattices of microcavity polaritons

Alberto Amo
CNRS - Laboratoire PhLAM - Lille (France)

The implementation of topological effects in photonics has recently emerged as a promising research avenue for the manipulation of photons at the micron-scale [1]. The possibility of engineering the on-site energy and hopping makes polariton lattices an excellent platform to study this type of phenomena. In this presentation we will review our recent experiments on the topological properties of polariton lattices etched in semiconductor microcavities. In 2D, we have implemented honeycomb lattices in which polaritons behave as electrons in graphene, and we have studied the edge states that emerge from the topological properties of the lattice [2,3]. In 1D, we have fabricated lattices that implement the orbital version of the Su-Schrieffer-Heeger Hamiltonian. These lattices show lasing in topological edge states with resilience to disorder [4].

The polariton platform opens new sandpit to simulate elaborate Hamiltonians combining topology, interactions and lasing in semiconductor microstructures.
  


[1] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Topological Photonics, arXiv:1802.04173 (2018).
[2] M. Milićević, T. Ozawa, P. Andreakou, I. Carusotto, T. Jacqmin, E. Galopin, A. Lemaître, L. Le Gratiet, I. Sagnes, J. Bloch, and A. Amo, Edge states in polariton honeycomb lattices, 2D Mater. 2, 34012 (2015).
[3] M. Milićević, T. Ozawa, G. Montambaux, I. Carusotto, E. Galopin, A. Lemaître, L. Le Gratiet, I. Sagnes, J. Bloch, and A. Amo, Orbital Edge States in a Photonic Honeycomb Lattice, Phys. Rev. Lett. 118, 107403 (2017).
[4] P. St-Jean, V. Goblot, E. Galopin, A. Lemaître, T. Ozawa, L. Le Gratiet, I. Sagnes, J. Bloch, and A. Amo, Lasing in topological edge states of a one-dimensional lattice, Nat. Photonics 11, 651 (2017).

 

JavaScript has been disabled in your browser